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SUMMARY 

The fluid forces resulting from wave interaction with large submerged structures may be calculated 
using numerical procedures based on the solution of the associated boundary-value problem. In this 
paper, the analysis of wave interaction with a fixed submerged object of arbitrary cross-section and 
infinite length using a two-dimensional boundary value formation based on linear diffraction theory is 
summarized. Subsequently, the application of the boundary element method to obtain a solution is 
presented. The numerical considerations are emphasized with particular reference to computational 
efficiency. 

Numerical results are presented in the form of dimensionless wave force plots for various structural 
shapes. In the case of a bottom-seated half cylinder, for which there exists a closed-form solution, 
comparisons are made between results generated using both boundary element and equivalent finite 
element approaches. In the case of a submerged cylinder, comparisons are made between boundary 
element derived values and experimental results. The boundary element results compare well with both 
the closed-form solution and the experimental values. 
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INTRODUCTION 

The analysis of the interaction of surface waves with an immersed structure necessitates the 
consideration of diffraction effects when the structure size is large relative to the incident 
wave length. Examples of such structures are concrete gravity platforms and submerged oil 
storage tanks. The role of the diffraction phenomenon in the determination of fluid loadings 
on large diameter offshore structures has been outlined in a state of the art appraisal of fluid 
loadings.' 

Problems in which diffraction of the incident wave must be accounted for have been 
tackled in a variety of ways. The use of functional diffraction coefficients (as functions of the 
frequency or wavelength) has been suggested? The application of Stokes' non-linear wave 
theory to a bottom-seated, deeply submerged half cylinder and hemisphere, has led to the 
development of approximate closed form solutions for the wave forces3 Closed form 
solutions for diffraction around piles4 and submerged cylindrical tanks5 have been proposed. 

These approaches to the solution of diffraction problems are low cost with respect to 
development and computer time, but are restricted in their application to objects of simple 
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geometry. A more general type of solution is provided by diffraction theory. Applications of 
diffraction theory in the form of direct numerical solution of the associated boundary-value 
problem, have in recent years been made more practical with increases in the memory size 
and computing speed of digital computers. 

In diffraction theory a solution to the problem of wave-structure interaction is set up in 
terms of a velocity potential. Diffraction theory is normally applied in a linearized form. The 
formulation is that of a boundary-value problem governed by Laplace's equation and having 
mixed boundary conditions. A linearized free surface boundary condition, the kinematic 
boundary conditions on the surface of the structure and on the sea floor, and a distant 
radiation condition for the diffracted wave must all be satisfied. 

The boundary-value problem described above may be solved numerically in several ways. 
The Green's function method6 is one that has been used extensively. Sources are distributed 
over the surface of the object, an integral equation for the potential over the boundary of the 
object is then developed, a Green's function being used to represent the source potential. 
Several applications of this method have been 

Finite element methods also may be used to solve the boundary-value problems associated 
with wave-structure interaction. One approach involves using a variational principle to 
determine the velocity potential throughout the fluid domain.''*12 

In this paper Green's second identity and a fundamental s ~ l u t i o n ' ~ - ~ ~  are used to develop 
a bolmdary integral equation over the full boundary of the problem domain and this leads to 
the development of a two-dimensional numerical solution to the boundary-value problem. 
This approach has recently been extended to  the three-dimensional domain7,'* and to 
solutions using a non-linear incident wave." The fundamental solution is simple in form and 
only satisfies the domain condition. This is in contrast to the Green's function method where 
the derivation of the Green's function that satisfies all or some of the imposed boundary 
conditions is generally difficult and sometimes impossible. The resulting boundary integral 
equation is solved approximately by dividing the full boundary of the domain into elements 
and numerically integrating over each element in turn. Systematic application of the 
boundary integral to each element nodal point yields a set of simultaneous equations which 
are solved to obtain nodal values for the diffracted-wave potential. The wave forces and 
pressures on the structure are calculated from the velocity potential of the wave. Several 
objects of symmetry are used in presenting the results of the analyses. 

THEORY 

Formulation of the boundary-value problem 

The formulation of the problem set up within the framework of two-dimensional linear 
diffraction theory, has been stated previously" but is presented here in a summary form for 
completeness (equations (1)-(9)). Under the assumptions of potential flow, small wave 
amplitude, and a direction of wave propagation that is normal to the longitudinal axis of the 
object a linearized harmonic velocity potential @(x, y, t )  is introduced as the real part of a 
complex function in the form 

where +(x, y) is the spatial velocity potential and (+ is the incident wave frequency such that 
u = 2r /T  in which T is the period of motion. 

The fluid is bounded by an impermeable bottom boundary at y = -d and a mean free 

@k Y, t )  = Re [+(x, Y)~- '&I  (1) 
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surface at y = O  (see Figure 1). The spatial velocity potential &(x, y )  satisfies the Laplace 
equation within the fluid domain and is subject to a linearized mixed t y p e  boundary 
condition on the mean free surface, and kinematic boundary conditions on the ocean bottom 
and the surface of the object. 

Decomposition of the spatial velocity potential into incident and diffracted components 
enables a boundary-value problem for the diffracted potential &(x, y )  to be written as 

Laplace's equation V*+,(x, y )  = o in ( 2 4  

a 4 b  _- Object surface - 
an  an 

"I on r, -- 

Ocean bottom - 0  on r2 (2C) 

ikd,, = 0 on r3(x f x,) ( 2 4  Radiation boundary - - 

k,&,=O on r4 ( 2 4  

-- 
an 

a d b  
an  

-- Free surface 
an  

where k,, is defined by the dispersion relation 

(3) 
u2 

k o =  k tanh kd =- 
g 

in which d is the ocean depth, g is the acceleration due to gravity and k is a wave number. 
From linear wave theory, the incident potential &(x, y )  corresponding to a train of 
right-running waves is given in complex form as 

-iga, cosh [k(d + y)] i k x  
e 

cr cosh [ kd] ddx,  Y >  = - 

Wave 
7 

(4) 

Figure 1. Definition sketch 
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where a,  is the wave amplitude. The incident potential derivative, -a+,/an, in equation 2(b), 
is equivalent to the incident wave velocity v,(x, y) which is represented in complex form by 

cash [k(d  + y)l+ in, sinh [ k ( d  + y)l)eikx 
cosh [ kd] V n b ,  Y) = -- gao 0- cosh [ kd] 

where n, and n, are components of the outward unit normal vector on the surface of the 
object in the x and y directions, respectively. Equation 2(d) represents a radiation condition 
that the diffracted potential must satisfy at large distances from the object such that only 
outgoing waves are admitted. For modelling purposes it is assumed that the local disturbance 
at the object decays sufficiently at a finite distance, x,, from the object to justify the radiation 
condition being applied on a truncated boundary at x = q. 

The boundary integral equation 

In order to solve the boundary-value problem described by equation (2a)-(2e) an approxi- 
mation for the diffracted-wave potential &,, is introduced which is represented by the 
complex potential function 4. A source function, u*, known as the fundamental solution, is 
introduced and Green's second identity is applied to the pair of functions, 4 and u*, to 
obtain an integral equation on the full boundary of the domain. The fundamental solution 
for a two-dimensional isotropic medium is given by the expression 

1 
27r 

u* =-In (+) 
where r is the distance between the observation point and the 'source' point i .  This solution 
satisfies the domain condition of the problem, but does not satisfy any of the boundary 
conditions. 

A general boundary solution for the unknown function 4, formulated for a point i lying 
anywhere along the boundary is written as 

where q is the normal derivative of the potential function 4 and ci = 1/2 for smooth 
boundaries but, in general, will depend on the form of the boundary on which the point i is 
located. 

A solution for the function 4 is found by applying equation (7) numerically at each nodal 
point, i, on the boundary of the domain, thus building up a matrix system of equations. 
Nodal values of the function 4, the diffracted-wave potential, then may be obtained by 
solving the system of equations. 

Wave pressure and forces 

velocity potential +(x, y) is found by summing the diffracted and incident components. 

using the linearized Bernoulli equation given as 

Once nodal values of the diffracted-wave potential have been obtained, the total spatial 

The dynamic pressure P(x, y, t )  on the structure is found from the velocity potential by 

a@ 
at 

P(x, y, t )  = -p- = Re [ip+(x, y)e-'"] 

where p is the density of the fluid. 
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The wave forces are found by integrating the dynamic pressure over the surface of the 
object. The force per unit length of the object is calculated in component form as 

NUMERICAL SOLUTION 

Matrix formulation 

In general the boundary integral equation developed in the preceding paragraphs may be 
solved only approximately by using numerical techniques. The solution method consists of 
using discrete elements to model the full boundary of the domain. Equation (7) is written in 
discretized form for n boundary elements as 

where nk refers to the elements on boundary r k .  Either elements with a linear or quadratic 
(see Figures 2 and 3) variation of 4 and q along their length are used to model the boundary. 
For linear elements the integral terms in equation (10) may be written in terms of linear 
interpolation functions JI1 and (cI2 as 

and 

where +1 and 

which may be expressed in matrix form as 

are nodal values. 
Writing equation 10 for each nodal point i in turn yields a full set of equations for a nodes 

A+=F (12) 

where A is a complex fully populated n by n matrix. + is the complex vector of unknown 

\ 
Variation of + or q 

Figure 2. Linear element 
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CALCULATE THE INCIDENT VELOCITY NORMAL 
TO THE SURFACE OF T H E  OBJECT A T  EACH 

NODAL POINT ON THE OBJECT 
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Variation of 6 or q 

Figure 3 .  Quadratic element 

nodal diffracted potentials, and F is a complex vector of nodal terms of which only those 
corresponding to the nodes on the surface of the object will be non-zero. 

ON THE STRUCTURE 

Figure 4. Solution steps 
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The amount of input data required for these boundary element programs is relatively small 
compared to that of equivalent finite element formulations. ’This is evident from Figure 7 
where boundary element and finite element models are shown for a bottom-seated half- 
cylinder. The boundary element input data consists of boundary node co-ordinates and 
various problem parameters. An equivalent finite element model would additionally require 
the input of internal node co-ordinates and element connectivities. 

Owing to the relatively small amount of core memory available on the PDP 11/34A 
computer, the full system matrix A and vector F are stored on disk in a series of blocks. The 
incident velocity normal to the surface of the object is calculated using equation (5) at each 
nodal point o n  the object. The full system of equations is then assembled by applying 
equation (10) at each nodal point i in turn. The nodal terms in matrix A are calculated by 
summing the element contributions of the integral terms in equations ( l l a )  and ( l lb) .  The 
calculation of these integral terms, which in general is carried out using numerical integra- 
tion, is discussed in a later section of this paper. 

The assembled system of equations (12) is solved using the block reduction scheme shown 
in Figure 5. Each block of equations is in turn read into the main core memory, reduced 
using Gaussian row elimination, then written back into disk. The blocks of equations are 
read and written in an unformatted sequential format which saves execution time by 
eliminating the data conversion process. 

‘The solution of the system of equations represents nodal values for the diffracted wave 
potential. Combining the incident and diffracted potentials together enables the pressure and 

FULL SYSTEM 
OF EQUATIONS 

MATRIX A GI 
I 

REDUCE BLOCK I 

REDUCE BLOCK 2 

REDUCE BLOCK 2 

REDUCE BLOCK 3 

P I  REDUCE BLOCK 3 

Figure 5 .  Block reduction scheme for the system of equations 
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fluid forces resulting from the wave-structural interaction to be calculated using equations 
(8) and (9), respectively. 

Numerical integration 

The integral terms, 

are in general evaluated using numerical integration techniques. The case of a linear element 
discretization is considered below. 

For all elements that do not include the node under consideration, the integral compo- 
nents, h,, 1 = 1 , 2  and, g,, I = 1,2 ,  in equations ( l l a )  and ( l lb ) ,  are calculated using a 4-point 
Gauss quadrature rule as follows: 

where & ( & )  is the interpolation function, w k  k = 1 , 2 , 3 , 4  are the four weights, [ k  k = 
1 , 2 , 3 , 4  are the four integration points and X and Y are the co-ordinates of the extreme 
points of the element j .  The variables w(&) and DIST are as shown in Figure 6. 

When the element to be integrated includes the node under consideration, the components 
hi, and hi2 are zero, owing to the orthogonality of the normal vector and the vector between 

\ 
\ 

Nodal point ' i '  , /o, Node'j +1' 
under DIST/ \ 

-_- - - - - 
Numerical / 
integration- 

points / 
Element ' j '  

E lament ' j '  

E = -1 E' / E E x 1  - N 

Figure 6. Numerical integration scheme for linear elements 
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the source and integration points (see equation (lla)) the components gj, and gj2, however, 
are calculated using the following analytical expressions 

gjl = - 0.5 In -+ 0.75 2T lrl' ( lrll l )  
and 

gjz = - 0.5 In -+ 0.25 2T l r l l  ( lrll l )  

where rl is the length of the element. These expressions are developed by substituting the 
fundamental solution given by equation (6) into equation ( l lb)  and carrying out the 
integration. 

In the case of quadratic elements the integral components are computed using an %point 
Gauss quadrature rule for all elements that do not include the node under consideration. The 
integral components for a quadratic element which includes the node under consideration 
cannot be calculated analytically as with linear elements, owing to the complexity of the 
integration. Hence, the hii terms, which are not generally zero, are calculated using %point 
Gauss quadrature. The gj terms are calculated using a logarithmically weighted numerical 
integration formula that takes into account the asymtopic behaviour of the fundamental 
solution near the source point i .  For a more detailed discussion of these numerical 
integration techniques the reader is referred to References 20 and 21. 

Modelling considerations 

The accuracy of the results generated using this numerical procedure is dependent on the 
boundary element discretization that is used to model a particular problem. Good con- 
vergence is generally obtained using less than 100 nodal points distributed around the full 

I I 00 - , -  A X  I- 
1 

I 

1 30 elements 
I 
I 

a I 

66 nodes 

56 elements 

Figure 7. Discretizations for a bottom-seated half cylinder with d/a = 4.0 
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boundary. The following consideration, however, should be noted when deciding upon the 
discretization for a model. 

Where nodal points are positioned at changes in direction of the object boundary it may 
be necessary to define two nodes in order to bridge the discontinuity in the normal velocity 
profile. In the case of a linear boundary element model, double nodes are defined for all 
nodal points that are positioned at changes in direction of the object boundary. An example 
of this is shown in Figure 7 for curved quadratic elements, where double nodes are only 
defined for nodal points positioned at sharp changes in direction of the object boundary. 

The number of elements required to model the free surface boundary increases as the 
wavelength decreases (or k increases). A linear element length, Ax, equal to or less than 
one-eight of the incident wave length is found to be adequate. Also if the object is positioned 
close to the free surface or the ocean floor, more elements are required to model those 
respective boundaries and the object boundary because of the singular behaviour of the 
fundamental solution near the boundary. 

The modelling and truncation of the radiation boundary has less of a bearing on the 
numerical results than the discretization of the other boundaries. The allowable truncation 
distance x, will depend on the degree of diffraction of the incident wave by the object. In 
general, x, should be increased as the relative depth dla, or relative submergence hla 
decrease, and the relative wavelength 2~ralL increases. For most problems, a truncation 
distance of five object diameters is sufficient. 

RESULTS AND DISCUSSION 

The wave interactions with a bottom-seated horizontal half cylinder, a submerged horizontal 
cylinder and a submerged rectangular block are analysed. For the half cylinder, a classical 
solution exists. This classical is used to test the convergence of a quadratic 
boundary element model which is compared to that of an equivalent six-node finite element 
model. Boundary element results for the submerged horizontal cylinder are compared to 
experimental data. 

Results for the half-cylinder and cylinder are presented in the form of dimensionless wave 
force plots. In addition, pressure distributions on the surface of the object are presented for 
all three objects. 

CONVERGENCE TEST 

Three different sets of quadratic boundary element and six-node finite element discretiza- 
tions are used to model a bottom seated horizontal half cylinder. The finest pair of these 
meshes is shown in Figure 7. 

Figures 8-11 show the dimensionless horizontal and vertical wave forces, f, = 
F,,,,/(pgaa,) and f, = F,,,,,/(pgau,) plotted against the dimensionless wave number, ka, for 
the depth-to-radius ratio dla equal to 4.0. The horizontal force plots show that the boundary 
element models have obtained a better degree of convergence than the equivalent finite 
element models. The horizontal forces have not converged fully to the asymptotic solution 
because the numerical modeIs take into account the effect of the free surface on the 
diffracted wave where as the asymptotic solution neglects this effect. 

The vertical force plots show very good convergence for both the boundary element and 
the finite element models. This is because the vertical forces on a half cylinder are more 
dependent on the incident potential than the calculated diffracted potential. 
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0.0 
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0.02 0.2 0.4 0.6 0.8 1.0 

k a  
Figure 12. Horizontal and vertical wave forces on a submerged horizontal cylinder 

SUBMERGED HORIZONTAL CYLINDER 

Model tests on a cylindrical tank of radius 6 in. as shown in Figure 12 have been carried 
In the series of analyses considered here, the cylinder was suspended in the tank from 

the top such that h/a = 4.0 and the depth of water was such that dla = 6-0. 
Figure 12 shows the dimensionless wave forces f, and f,, plotted against ka. The 

agreement between the experimental results and the numerical curves is good. It is noted 
that this agreement improves as ka decreases, where ka may be interpreted as the 
dimensionless wave steepness 2aolL. 

PRESSURE DISTRIBUTION 

The pressure distribution resulting from wave interaction with a submerged object obtained 
for the cases of a half cylinder, a cylinder and a rectangular block is shown in Figures 13 and 
14. The pressures are calculated in the dimensionless form p(x ,  y, t )  = P(x,  y, t)l(pgao) and 
the distributions around the objects are plotted diagrammatically at four different times 
within one wave period for the wave number k = 0.05. 

When placed in shallow water with d /a  = 2.5, as shown in Figure 13, the objects cause a 
noticeable blocking, or diffraction, of the flow resulting in a higher pressure at the front of 
the object than at the back. This is well illustrated for the case of the cylinder (see Figure 
13b)). 
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,-*Wave direction 

1.0 - S u r f  ace 
Prof i le  7/00 0.0 * 

X 

t i7 .31 
P(X, y, t) = 1.0 

SCALE: t-- 

( a )  

t= 4.07 t= 2.44 t= 0.0 secs. 

Figure 13. Pressure distribution on submerged objects for d/a = 2.5 

In Figure 14 the objects are shown positioned in deeper water with dla = 6.0. For this case 
there is very little blocking of the flow, so producing a more balanced pressure distribution 
and smaller magnitudes of pressure. 

Considering the pressure distributions for both values of dla at each time step it is noted 
that the pressure variation is mainly dependent upon the position of the incident wave profile 
relative to that of the object. As the value of dla decreases however, the diffraction of the 

y4 t-- Wave direction 

Surf ace 1.0 - 4 

P 
X 

t= 6.75 t =  4.50 t= 2.25 t = 0.0 secs. 
p(x,y,t) =0.2 

( a )  

( C )  

Figure 14. Pressure distribution on submerged objects for dla = 6.0 
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incident wave becomes more important and will have a large effect on the pressure 
distribution around an object. 

CONCLUSIONS 

The numerical technique presented above is shown, for the several objects that are analysed, 
to give results that compare well with known solutions and experimental data. The efficiency 
of the technique is demonstrated by the good convergence that is obtained while using 
relatively few elements to model the boundary of the problem. 
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